Competing Orders: speculations and interpretations

Leon Balents, UCSB Physics

- Three questions:
 - Are COs unavoidable in these materials?
 - Are COs responsible for the pseudo-gap regime?
 For the superconductivity itself?
 - Which if any competing orders are present at T=0 in an “ideal” system?
Preparing for the conference...
Competing Order means?

- At least local symmetry breaking (charge or spin or ?? ordering) in regions large enough and with slow enough dynamics (quasi-static) that they can be clearly identified
 - in the pseudo-gap region
 - in the T=0 normal state
 - in the SC state
 - bulk coexistence
 - in the vortex “cores”

- n.b. “resonance” or “soft mode” does not mean quasi-static local order. It means there is an excitation which could be made to induce local or global order, which is fairly long-lived.
Theoretical Reasons for CO

• Pseudo-gap seems to strengthen with under-doping
 - Luttinger theorem otherwise predicts large Fermi surface
 - Even “exotic” (RVB-type) scenarios seem to require a small Fermi surface if no CO at T=0

• Quantum-critical thinking
 - A continuous or nearly continuous QPT out of a superconductor should be described by a field theory of *quantum vortex unbinding*

 - Vortex Berry phases lead *inevitably* to CO in the proximate normal state

 - Believe this is true for any *(super-)*clean SC-N QPT provided the quasiparticle DOS remains vanishing at E_F up to the QCP
 - Details of CO depend upon doping, pairing symmetry, some other parameters, but it is generally at a doping-dependent wavevector
 - Requires CO within range of zero-point motion of vortex core in SC state
Cause or Effect?

• Pseudo-gap is a *high energy* phenomena
 – If it is the cause, CO should be locally formed at comparable or higher temperature $T_{CO} > T^*$
 – Usually, expect T_{CO} no more than 2-3 times actual critical temperature for CO, *unless*
 • frustrated – incommensurate/glassy charge order?
 • or: order occurs in *dilute*, disconnected *local regions*
 – Actual *critical temperatures* for identified COs are *low*
 • “observations” of CO at higher T seem to be observing “soft mode” *excitations* characteristic of potential CO at lower T (c.f. neutron resonance) - Vershinen *et al* STM?

• Conclude
 – If CO drives pseudo-gap, it must be frustrated or dilute
 - OR -
 – It is a consequence not the driving force behind the pseudo-gap
High Temperature Order?

• **Frustrated (charge?) order**
 - Charge order does seem much more robust when commensurate but…
 - Many properties seem to behave smoothly with doping
 - Would like to see clear signatures of local, even frustrated, charge ordering (glassiness?) at high temperatures - especially in cleanest YBCO materials (c.f. NQR/NMR in LSCO)
 - Naïve charge order could explain gap but not width near antinodes

• **Dilute order**
 - Coexistence of small but well-formed regions of CO state inside normal or SCing phase seems to require proximity to a *strong first order* transition (if disorder is weak) **Zhang SO(5)**
 - Why should coexistence occur over such a large region (the pseudo-gap) of phase space?
 - One possibility is Emery-Kivelson suggestion of phase separation
 - macroscopic neutrality forces spatial segregation
 - test: is charge density in CuO$_2$ plane actually inhomogeneous?
CO as a derivative phenomena?

• Implication: pseudo-gap is some more subtle “critical” state
 -RVB “algebraic spin liquid”/QED$_3$?
 -Quantum critical “fan”? Of what QCP?

• What do we learn from observations of CO at lower energy/temperature?
 -Critical PG state must be “susceptible” to observed CO at low-T
 -Conversely, PG state must be able to avoid CO if experiments find otherwise at low temperature.

• In “cleanest” cuprate ortho-series YBCO
 -low-T CO may be \approx antiferromagnetic clusters (µSR, neutron)
 -thermal and electrical transport indicate metallic non-SC state w/ WF violation?
 -indications (3meV neutron resonance) of \approx continuous onset of magnetic order

PG state should be susceptible to local and bulk magnetic order and (presumably) Fermi surface formation
Algebraic Spin Liquid?

n.b. I will presume to explain P. Anderson et al theory

- A predicted RVB state of \(\frac{1}{2} \)-filled t-J-like model
 - has power-law spin and density fluctuations of many types
 - “neutral fermions” with d-wave-like PG

- Proposal: PG is to be understood as governed by \(\frac{1}{2} \)-filled RVB Algebraic Spin Liquid (\(\approx \text{QED}_3 \))
 - Experimental trouble if AF state actually borders SC phase?

- Problems?
 - ASL may be intrinsically unstable
 - Doping is not negligible in PG regime
 - Not clear whether ASL can give rise to metal at \(T=0 \)
 (clearly only small Fermi surface possible if at all)
Deconfined Criticality

- RVB-states can be more robustly stabilized in quantum critical region.
- Could dSC-CO QCP be also deconfined? Seems very likely something like this can happen for d-wave SC.

Senthil et al, 2004 (LB, S. Sachdev)

Burkov et al, 2004 (doped dimer model)

Same QCP can describe transition to different non-SCing phases
Conclusions

• If CO is really a driver for the pseudo-gap, it probably must imply charge inhomogeneity at high temperature $T \sim T^*$. Large inhomogeneity at low T. Testable.

• Other possibility: pseudo-gap is some critical state, which should be *almost* stable, leading to observed CO at low T, near impurities, etc.

• RVB and its more recent incarnations at QCPs seem attractive candidates for such a state.
 – perhaps SC-CO QCP combines both physics in a natural way

• Main conclusion: recent experiments are amazing and CIAR is clearly playing a key role in advancing the field.